Spatial Analysis

Spatial Underpinnings

- All about maps
 - Degree of redundancy depends on map deterioration
 - Vital to build good base maps
 - By COC, aquifer horizon, time slice
 - Compare maps made at each level of data removal
 - Want fast, accurate estimation technique
 - Deterioration measured both visually, numerically
 - Concentration difference maps (bias maps)
 - Cost-accuracy tradeoff curves

Spatial Pre-Processing

- Key steps
 - Outlier screening
 - Time slices
 - Building CDF, indicator data
 - Estimation Mesh

Outlier Screening

- Often have spurious 'spikes' in concentration
 - Examine time series plots well-by-well
 - Remove obvious outliers from most recent data

Create Time Slices

- Goal: series of snapshots of plume/site
 - Assess redundancy for each slice
- Nuts & bolts
 - GTS automates time slice selection
 - Begins with most recent data
 - Ensures sufficient fraction of wells sampled during each slice
 - Maximum of 5 slices selected
- Helps account for seasonality

Uranium Time Slices

Slice	N wells	Intensity	Date Range (wks)
1	29	0.76	315 - 335
2	29	0.76	263 - 315
3	33	0.87	191 - 263
4	32	0.84	87 - 191

Univariate CDF, Indicator Data

- Multiple Indicator Local Regression (MILR) is quasi-nonparametric
 - Relies on statistical distribution (CDF) of observed measurements
 - Typically quite skewed, non-normal
 - GTS compiles CDF across time slices to better capture variation over time
- CDF used to pick indicator cutoff levels
 - Values close to fixed percentiles
 - Indicator 0-1 data created for each cutoff

Uranium CDF

Uranium Cutoff Levels

NUM	CUTOFF	RAWCUT	PCT
1	0.1	0.082	0.1
2	3	3.16	0.205
3	7	7.16	0.306
4	15	13	0.406
5	20	19.7	0.507
6	30	31.8	0.607
7	50	52.5	0.707
8	70	71.6	0.805
9	100	100	0.903
10	150	141	0.952
11	250	235	0.991

Estimation Mesh

- Grid of pts where local regression estimates made
- Key: balance processing time, grid density
 - GTS computes dense grid while estimating surface elevation
 - Estimate of time needed for minimal grid
 - User can increase time allotted

Uranium Site Map

Uranium Site Mesh

Begin Optimization

- Key steps:
 - Create base maps
 - Pick spatial bandwidth
 - Iteratively remove well locations
 - Kick out locations with greatest redundancy
 - Re-estimate maps periodically
 - Build cost-accuracy tradeoff curves
 - Determine level of optimal removal
 - Construct optimal (reduced) network

Creating Base Maps

- MILR first uses all available data
- Must pick spatial bandwidth for each slice
 - Compute residuals at each known location
 - Check range of possible bandwidths
 - Residual post plots
 - CP criterion, goodness-of-fit measures
 - Use same bandwidth choices for redundancy analysis

Uranium Slice 1 Base Map

Check Base Map Accuracy

